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Abstract. The reparametrization transformation between ultrametrically organised states of replicated
disordered systems is explicitly defined. The invariance of the longitudinal free energy under this transfor-
mation, i.e. reparametrization invariance, is shown to be a direct consequence of the higher level symmetry
of replica equivalence. The double limit of infinite step replica symmetry breaking and n → 0 is needed
to derive this continuous gauge-like symmetry from the discrete permutation invariance of the n replicas.
Goldstone’s theorem and Ward identities can be deduced from the disappearance of the second (and higher
order) variation of the longitudinal free energy. We recall also how these and other exact statements follow
from permutation symmetry after introducing the concept of “infinitesimal” permutations.

PACS. 75.10.Nr Spin-glass and other random models – 05.50.+q Lattice theory and statistics (Ising,
Potts, etc.)

1 Introduction

Exact statements such as Goldstone’s theorem [1,2] and
Ward identities [3] proved very useful in the perturbative
analysis of ordinary statistical systems with a continuous
symmetry. For example, Goldstone’s theorem ensures that
the low temperature phase of the O(m) model is massless
(the transverse susceptibility is infinite), while the Ward
identities, i.e. the exact relations between the different
vertex functions (derivatives of the Legendre-transformed
free energy), help us to get rid of dangerous infrared di-
vergences, order by order in perturbation theory [4].

Zero modes and massless phases are surprisingly fre-
quent in quenched random systems, too. The idea of the
spin glass phase being marginal occurred very early to
various authors [5,6] studying the mean field version of
the Ising spin glass, the Sherrington-Kirkpatrick (SK)
model [7], without using replicas. After the solution of
the SK model by Parisi [8], the marginality of one of
the most dangerous eigenvalues across the whole spin
glass phase was proven by two different technics [9,10].
In the truncated version of the SK model, valid close to
Tc, a whole band of zero and near-zero eigenvalues were
found [11]. The nature of the spin glass phase in finite di-
mensional models with short range interaction has been
the subject of intensive debate, and the question has not
been settled until now. Nevertheless, both conflicting the-
ories, “droplet” picture or phenomenological scaling on
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one side [12–14] and the ultrametrically organised com-
plex phase space structure of Parisi on the other [8,15,16],
predict a marginal spin glass phase with an infinite spin
glass susceptibility.

To give another example of a quenched disordered sys-
tem with a massless low temperature phase, we can men-
tion the long-range correlated random manifold problem
in d = D+N dimensions, where D is the intrinsic dimen-
sion of the manifold. For N → ∞, while D < 4 is kept
fixed, the zero momentum limit of a family of eigenvalues
of the mass operator goes to zero [17]. (In the notation of
Ref. [17], λp=0(x;x, x) = 0, 0 ≤ x ≤ 1, where the momen-
tum vector p is D dimensional.)

The idea that a continuous symmetry emerges in the
Ising spin glass, which is a discrete model, giving rise to
Goldstone modes was raised twenty years ago [18]. Bray
and Moore argued, that it is the replica limit n→ 0, which
may be responsible for this rather strange phenomenon.
In Section 2, we will recall how the permutation invari-
ance of the n replicas becomes a continuous symmetry
in systems whose ordered phase is organised in the hi-
erarchical way proposed by Parisi, but only in the limit
R → ∞, where R is the number of steps in Parisi’s con-
struction. All the examples above belong to this class, ex-
cept the “droplet” theory, which corresponds to a replica
symmetric (R = 0) picture. The symmetry argument we
will use applies for a replicated system, and is a direct con-
sequence of the replica trick. How to derive Goldstone’s
theorem in the original models and what is the continuous
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symmetry there, is not clear for us and remains an open
question. The results of Section 2 were derived earlier us-
ing different, though closely related, infinitesimal permu-
tations [19].

The main result of this paper is left to Section 3, where
it is shown how the somewhat mysterious reparametriza-
tion invariance [15] follows from the permutation symme-
try of the n replicas. Ward identities can then be derived,
at least in principle, from the disappearance of the sec-
ond, third, etc. variations of the free energy functional.
We have thus two different methods to obtain Ward iden-
tities: invariance under infinitesimal permutations and/or
reparametrization. To make the presentation clear, com-
putational details are left to the Appendix.

2 Permutation symmetry and Ward identities

Our starting point is the free energy F , expressed as a
functional of the order parameters qαβ , α, β = 1, 2, . . . , n
and α < β, with n the replica number. The order param-
eters qαβ are usually regarded as the elements of a real,
symmetric matrix, zero along the diagonal (qαβ = qβα,
qαα = 0); for our purposes it will be useful to think of
them as components of a 1

2n(n− 1) dimensional vector q.
The association between the matrix qαβ and the vector q
is obvious: one lists the elements of qαβ with α < β in
any prescribed order (say row by row) to form a column
vector.

Although, the symmetry arguments we are going to use
are completely general, we wish to give here some specific
examples. The reader may think of F (q) as

• the functional appearing in the integral representa-
tion of the quenched averaged free energy of the SK
model [16];
• the Legendre-transformed free energy, with respect to

a source hαβ , of a replica field theory with a La-
grangean L(φαβ) invariant under any permutation of
the n replicas;
• a functional obtained by a second Legendre-

transformation [20] of a replica field theory with a
Lagrangean L(φα) (the source hαβ now couples to
products like φαφβ). In this case the notation Gαβ is
preferred to qαβ . The random field Ising model [21] and
the random manifold problem [17,22] are good exam-
ples where such a functional has an important role. Al-
though the diagonal elements Gαα are no longer zero
now, this leads to only slight modifications in the ar-
guments and has no influence on the results.

By construction, the free energy is invariant with
respect to the permutations P of the replicas:

F (q′) = F (q) for q′αβ = qPαPβ .

Permuting the components of a vector will not change its
length, so P generates an orthogonal transformation:

q′ = Oq, OT = O−1.

The invariance of F under O implies that its gradient
transforms as a vector:

∂F

∂q′
= O

∂F

∂q
· (1)

Throughout this paper, equation (1) will be used for
a vector qαβ built up by Parisi’s hierarchical construc-
tion [8,16], and having the following properties: the (for
the time being) discrete values of the matrix elements will
be called qr, and the sizes of the hierarchically arranged
blocks pr, r = 0, 1, . . . , R + 1 and, by convention, p0 = n
and pR+1 = 1. r is the overlap of the replicas α and β,
r = α ∩ β, i.e. qαβ = qr, and by definition α ∩ α = R+ 1.
Both series of parameters are assumed to be monotonic:
qs < qr and ps < pr for s < r. R is the number of
replica symmetry breaking steps; our main concern will
be the evolution of the symmetries of the system as
R → ∞. For large but finite R the q’s and the p’s fill
the intervals [q0, qR] with q0 ≥ 0, qR < 1, and [p1, pR]
with p1 > p0 = n ≥ 0, pR < 1, respectively, in a quasi
continuous manner:

qr+1 − qr = O(1/R), r = 0, 1, . . . , R− 1,
qr+1 + qr−1 − 2qr = O(1/R2), r = 1, 2, . . . , R− 1,

pr+1 − pr = O(1/R), r = 1, 2, . . . , R− 1,
pr+1 + pr−1 − 2pr = O(1/R2), r = 2, 3, . . . , R− 1

(2)

(the difference p1 − p0 and pR+1 − pR may be of O(1)).
A vector q associated with a matrix qαβ with the above
structure and continuity properties as in equation (2) will,
in the following, be called a Parisi vector. Note that we
have not assumed the q’s and p’s to be stationary. In fact,
in most of what follows we will be considering symme-
tries that are present irrespective of whether we are at a
stationary point or not.

Let us consider now the action of a special permuta-
tion of replicas on a Parisi vector. The permutation will
be chosen in such a way as to interchange two blocks
of size pr+2 and leave the rest unchanged. The replicas
belonging to these two blocks will be labelled by αi and
βi, respectively, i = 1, 2, . . . , pr+2. The permutation in
question will then act as Pαi = βi and Pβi = αi for
i = 1, 2, . . . , pr+2, and as Pα = α for α outside the two
selected blocks. If the two blocks belong to the same block
of size pr+1, i.e. if αi∩βi = r+ 1, this permutation is just
an element of the residual symmetry group that remains
after replica symmetry breaking (RSB), and will leave
the Parisi vector invariant (q′ = q). If the two blocks are
chosen farther apart (αi ∩ βi < r + 1), however, q′ will
not be a Parisi vector any more, and, depending on P , a
smaller or larger difference q′ − q develops. The smallest
change is expected for αi ∩ βi = r. For this choice, the
only nonzero components of q′ − q are the following:

(q′ − q)αiγ = (q′ − q)βiδ = qr+1 − qr,

for

αi ∩ γ = βi ∩ δ = r and αi ∩ δ = βi ∩ γ = r + 1,
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and

(q′ − q)αiγ = (q′ − q)βiδ = qr − qr+1,

for

αi ∩ γ = βi ∩ δ = r + 1 and αi ∩ δ = βi ∩ γ = r.

The length of q′ − q is√
(q′ − q)2 =

√∑
α<β

(q′ − q)2
αβ

=
√

4pr+2(pr+1 − pr+2)(qr+1 − qr)2 (3)

which is of O(1/R3/2), i.e. infinitesimal.
The idea of constructing an “infinitesimal” permuta-

tion has been around for a long time in the replica ap-
proach to random systems. The first such transformation
appeared in [23], where it was shown that a suitably cho-
sen linear combination of replicon eigenvectors added to
a Parisi vector will result in a “reparametrization” of this
vector, i.e. in a modified sequence of parameters qr and pr.
This observation will be further developed below. Shortly
thereafter Goltsev introduced a set of “infinitesimal per-
mutations” and showed how any finite permutation can be
built up from infinitesimal ones [24], without exploiting
the full potential of these infinitesimal generators. Inde-
pendently, Parisi and Slanina rediscovered the same trans-
formation in a random polymer context [25]. Finally an in-
finitesimal transformation closely related to the one above
was used by ourselves to derive Ward identities for the spin
glass [19], in the rest of this section we recall some of the
results derived there1.

After finding infinitesimal symmetry transformations,
we can follow the usual steps to obtain Ward identities in
a system with a continuous symmetry [3]. Since q′ is very
close to q we can expand the left hand side of equation (1)
to get

Of − f = M (q′ − q) + . . . (4)

where f is the gradient vector

f =
∂F

∂q
(5)

and M is the mass operator with components

Mαβ,γδ =
∂2F

∂qαβ∂qγδ
· (6)

Evaluating the derivatives in equations (5) and (6) at qαβ
(a Parisi vector) we get a gradient vector f with the same
Parisi-like structure, and a mass operator which has the
structure of an ultrametric matrix. (Ultrametric matrices
commute, by definition, with all the elements of the resid-
ual group. Their structure was studied in detail in [26].)

1 In reference [19], at editing, the equation numbering was
messed up. The puzzled reader will find the correct numbering
in the original cond-mat/9802166 version.

Equation (4) can then be analysed by the block diago-
nalization procedure described in [26]. As shown in that
paper, the relevant quantities representing the diagonal
blocks are:

• the one-dimensional replicon (R) blocks (i.e. eigen-
values) λ(r; k, l), r = 0, 1, . . . , R; k, l = r + 1, r +
2, . . . , R+ 1, and
• the (R + 1) × (R + 1)-dimensional longitudinal-

anomalous (LA) “kernels” of the LA blocks, Kk(r, s),
r, s = 0, 1, . . . , R and k = 0, 1, . . . , R + 1.

The explicit expressions for λ(r; k, l) and K(r, s) are given
in [26]. After block diagonalization the various compo-
nents of equation (4) give, to leading order in 1/R, the
following set of equations:

fr+1 − fr = (qr+1 − qr)λ(r + 1; r + 2, r + 2) +O(1/R2),
(7)

λ(r + 1; r + 2, r + 2)− λ(r; r + 1, r + 2) = O(1/R),
λ(r; r + 2, r + 2)− λ(r; r + 1, r + 2) = O(1/R),

Kr+2(r, s)−Kr+2(r + 1, s) = O(1/R), (8)

with r = 0, 1, . . . , R−1 and s = 0, 1, . . . , R. Equation (8)
expresses a continuity property of the mass operator, while
equation (7) is a Ward identity which establishes a rela-
tionship between the first and second derivatives of F . In
the limit R → ∞, after introducing the continuous pa-
rameter x by

x =
r

R + 1
, 0 ≤ x ≤ 1, (9)

equation (7) becomes
df(x)

dx
=

dq(x)
dx

λ(x;x, x), 0 < x < 1. (10)

If, finally, we take equation (10) at a stationary point
where f ≡ 0, we obtain

λ(x;x, x) = 0 (11)

for all x where dq(x)
dx 6= 0. (If, as is often the case, there

is a breakpoint x1 beyond which q(x) and also λ(x;x, x)
are constant, (11) still holds in the limit x → x−1 , and,
by continuity, it also holds for x > x1.) The status of
equation (11) is that of a Goldstone theorem for spin
glasses: under the assumptions of permutation invariance
and the existence of the continuous limit R→∞, (11) fol-
lows, independently of the concrete form of the free energy
functional F .

It is straightforward, at least in principle, to apply
the above ideas for deriving higher order Ward identities.
The mass operator M is the second derivative of the
free energy, and thus it transforms as a tensor under an
orthogonal transformation O:

M′ = OMOT, (12)

where M′ refers to the derivatives in (6) evaluated at
q′ = Oq. Expanding the left hand side of equation (12)



496 The European Physical Journal B

p 11 pp0
0

Q

Q

Q(p)

max

min

R

Fig. 1. Q(p) defines a chain of reparametrization transformations.

around q, and introducing the 3-point vertex function as

Wαβ,γδ,µν =
∂3F

∂qαβ∂qγδ∂qµν
, (13)

we get

(OMOT)αβ,γδ−(M)αβ,γδ =
∑
µ<ν

Wαβ,γδ,µν (q′−q)µν+. . .

(14)

Equation (14) is the starting point for obtaining the set
of Ward-identities establishing the exact connections be-
tween components of the 2- and 3-point vertices. To ac-
complish this work, a procedure, similar to that of block
diagonalisation of the 2-point vertices, transforming the
3-point vertices into a “canonical” form is needed. A sim-
ple example of such a relationship between 2 and 3-point
vertices is worked out in [19].

3 Reparametrization invariance – a subtle
corollary of permutation symmetry

As we see now, the symmetry responsible for the Gold-
stone modes is permutation invariance that becomes
“continuous” in the limit R → ∞. Nevertheless, in
reference [15] two of us purported to derive (11) from a
rather liberal interpretation of an other kind of symme-
try: reparametrization invariance. The obviously correct
result was obtained by using some uncontrollable calcula-
tional steps, such as forgetting about the differences be-
tween derivatives with respect to x or p(x). Having two
independent symmetries leading to the same exact prop-
erty of the system, i.e. the masslessness of some of the

modes, is rather unlikely, and one can suspect that a con-
nection between them must exist. In this section, we will
find this connection showing how reparametrization in-
variance follows, in the limit n→ 0 and R→∞, from the
primary symmetry of the equivalence of the n replicas.

The first thing we need is a clear definition of the
reparametrization transformation. It connects two Parisi
vectors q→ q′ with the following properties:

p′r = pr + δpr, r = 1, . . . , R ; (15)
q′r = Q(p′r), r = 1, . . . , R ; (16)
q′0 = q0, (17)

supplemented by the condition that the endpoints be in-
variant, δp1 = δpR = 0. The function Q(p) is obtained
from q(x) and p(x) by eliminating x between them, and
it remains fixed under a chain of reparametrization trans-
formations (see Fig. 1).

At this point we wish to stress that the reparametriza-
tion invariance is not a property of the free energy func-
tional F (qαβ), but of the functional F̃ (qr , pr) obtained
from F by restricting its argument qαβ to the subspace
spanned by the Parisi-like vectors. This subspace may be
called longitudinal, and, by extension, F̃ may be called
the “longitudinal” free energy. F̃ remains unchanged when
moving from q to q′ by the reparametrization transforma-
tion of equations (15–17):

F̃ (q′r, p
′
r) = F̃ (qr + δqr, pr + δpr) = F̃ (qr, pr). (18)

In the above equation q and q′ are Parisi vectors with the
properties given in equation (2), it expresses, therefore, an
exact symmetry of F̃ only in the limit R→∞. For finite
R the invariance of F̃ is only approximate, valid within
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corrections of O(1/R). Equation (18) can be cast into an
equivalent form using variations of F̃ :

δ(k)F̃ [q(x), p(x)] = 0 (19)

for any positive integer k. In equation (19) only p(x)
is varied independently, with the constraint of fixed
endpoints δp(0) = δp(1) = 0. By equation (16), δq(x)
can be expressed in terms of δp(x), an expanded form
of which is useful to be recorded here for further reference:

δq(x) = Q′[p(x)]δp(x) +
1
2
Q′′[p(x)]δp(x)2 + . . . (20)

To prove the invariance properties in equations (18)
or (19), ∆F̃ ≡ F̃ (q′r, p′r) − F̃ (qr, pr) will be expanded up
to second order in the δqr’s and δpr’s. A simple Taylor
expansion yields

∆F̃ =
R∑
r=1

(
∂F̃

∂qr
δqr +

∂F̃

∂pr
δpr

)
+

1
2

R∑
r,s=1

(
∂2F̃

∂qr∂qs
δqrδqs

+ 2
∂2F̃

∂qr∂ps
δqrδps +

∂2F̃

∂pr∂ps
δprδps

)
. (21)

On the other hand, the displacement between the two
“longitudinal” (Parisi-type) vectors in the full vector
space of the qαβ ’s gives an equivalent form for ∆F̃ . Using
the short-hand notation of brackets as in the Appendix
(Eqs. (33, 34)), we can write

∆F̃ = 〈f | q′ − q〉+
1
2
〈q′ − q |M | q′ − q〉+ . . . (22)

f and M were defined in equations (5) and (6), and under
any permutation P of the replicas, corresponding to an
orthogonal transformation O in the order parameter space
of the qα,β ’s, they transform according to equations (1)
and (12), respectively. As pointed out in Section 2, this is
a clear consequence of the permutation invariance of the
free energy F (qαβ). Furthermore, taking the permutation
P from the residual symmetry group corresponding to
the ultrametric construction of the vector q (which is
obviously different from the group of transformations
defined by q′), i.e. Oq = q, we get

f ′ = f = Of and M′O = MO = OM. (23)

Thus f and M are ultrametric, and equations (36, 39)
of the appendix can be used in equation (22). Putting
everything together from the appendix (especially from
Eqs. (31, 32, 38) and (40)), a comparison of equations (21)
and (22) yields:

∂F̃

∂qr
=
n

2
(pr − pr+1)fr r = 0, . . . , R,

∂F̃

∂pr
=
n

2
(qr − qr−1) r = 1, . . . , R

×
[
fr −

1
2

(qr − qr−1)λ(r; r + 1, r + 1)
]
. (24)

From this, in the limit R → ∞, the first variation δ(1)F̃
follows immediately. Introducing the continuous variable
x (see Eq. (9)):

δ(1)F̃ =
n

2

∫ 1

0

dx [q′(x)f(x) −Q′[p(x)]p′(x)f(x)] δp(x) ;

(25)

in deriving the above expression, use has been made of
equations (21) and (24), together with the reparametriza-
tion constraint equation (20).

The integrand in equation (25) is identically zero,
which is a direct consequence of the definition of Q(p):
Q[p(x)] = q(x). Thus the disappearance of the first vari-
ation, δ(1)F̃ = 0, seems to be somewhat trivial. We must
emphasize, however, that it is true along the whole chain of
reparametrization transformations; a result which follows
from the crucial step in the proof: if F (qαβ) is invariant
for any permutations of the replicas, then its derivatives
taken at an ultrametrically structured q are themselves
ultrametric. The permutation group of the n replicas is
“large” enough to include all the subgroups defined by the
Parisi-type vectors along a path of consecutive infinites-
imal reparametrization transformations. δ(1)F̃ is, there-
fore, identically equal to zero, implying the two equiva-
lent form of reparametrization invariance, equations (18)
and (19).

With its proof now accomplished, we can proceed
and use equation (19) for k = 2, 3, . . . to derive Ward-
identities (in principle to any desired order). They must
not be different from those following from the primary
symmetry of permutation invariance using infinitesimal
permutations, as in Section 2. To show this, we compute
δ(2)F̃ . The second partial derivatives of F̃ can be cal-
culated, by intensive use of the appendix, just like the
first ones were in equation (24). The results are as follows:

∂2F̃

∂qr∂qs
=
n

4
(pr − pr+1)(ps − ps+1)K0(r, s)

+
n

2
(pr − pr+1)λ(r; r + 1, r + 1) δKr

r,s

r, s = 0, . . . , R,
∂2F̃

∂pr∂qs
=
n

4
(qr − qr−1)(ps − ps+1)K0(r, s) +

n

2
fr δ

Kr
r,s

+
n

2
[−fr + (qr − qr−1)λ(r; r + 1, r + 1)] δKr

r−1,s

r = 1, . . . , R and s = 0, . . . , R, (26)

∂2F̃

∂pr∂ps
=
n

4
(qr − qr−1)(qs − qs−1)K0(r, s)

r, s = 1, . . . , R.

It is now straightforward to compute δ(2)F̃ using
equations (20, 21, 24) and (26). Note that the second term
in equation (20) multiplied by the first partial derivative
of F̃ with respect to q(x) also contributes. The rather
lengthy calculation consists of mainly partial integrations,
surface terms always disappearing because of the con-
straint δp(0) = δp(1) = 0. After a lot of simplification,



498 The European Physical Journal B

p

1

p(x)

R
p

0

0 1
x

(a)

(b)

1

Fig. 2. Reparametrization with fixed endpoints.

the K0(x, y) terms cancel each other, yielding the surpris-
ingly simple result:

δ(2)F̃ =
n

2

∫ 1

0

dx
[
q′(x)λ(x;x, x) − f ′(x)

]
Q′[p(x)] δp(x)2.

(27)

Since δp(x) is arbitrary, and assuming a monotonic
Q(p), the vanishing of the second variation is equivalent
with the vanishing of the expression in the brackets in
equation (27): i.e. equation (10) is now regained from the
invariance of the free energy F̃ when the “gauge” p(x) is
changing.

An example of two equivalent “gauges” with fixed end-
points is shown in Figure 2. We can even deform curve (b)
to curve (c) in Figure 3 with the plateaux around x = 0
and x = 1. Supplementing the definition of Q(p) by the
plateaux regions drawn by dashed lines in Figure 1, we
can easily figure out that the parametrization of curve
(d) represents the same Parisi vector qαβ as curve (c).
In that case, q(x) has also two plateaux with Qmin and
Qmax. Thus, the “longitudinal” free energy remains invari-
ant for reparametrizations where the endpoints p(0) and
p(1) move apart: 0 ≤ p(0) ≤ p1 and pR ≤ p(1) ≤ 1. The
most common gauge, p(x) = x, introduced by Parisi [8],
is also displayed as curve (e) in Figure 3.

As a last remark, we want to stress that reparametriza-
tion invariance expresses simply the fact that it is not the
gauge p(x) but Q(p) which has a physical meaning. (For
the Ising spin glass, the probability distribution of pures
states is the derivative of the inverse function p(Q).)

This work has been supported by the Hungarian Science
Fund (OTKA), Grant No. T032424, and by the convention
CEA/MAE 2000.

Appendix

In the starting phase of Parisi’s ultrametric construction
(see the references [8,16]) the block sizes pr’s are large
integers with the property that each pr+1 is a divisor of
pr for all r = 0, 1, . . . , R and the continuum of the pr’s
with the inverted monotonicity of a Parisi vector, defined
in Section 2, is obtained after taking n → 0, R → ∞.
(For a more mathematical treatment, see [27].) We adopt
a similar construction in the reparametrization procedure
and consider pr+1 a common divisor of p′r and pr, while
p′r itself is a divisor of pr; of course, this is valid at the
stage before the “upside down” continuation of n from a
large integer to zero, and δp of equation (15) can be con-
sidered an arbitrary function of x with the only condition
δp(0) = δp(1) = 0.

In this appendix, however, we remain in the domain of
large integer block sizes pr and p′r, for all r = 0, 1, . . . , R
and finite R, and the properties of the previous para-
graph will be assumed. This enables us to expand the vec-
tor q′ − q, the displacement under the reparametrization
transformation, in terms of basis vectors. These basis vec-
tors form a complete set in the n(n−1)

2 -dimensional space
of the qαβ ’s, and they block-diagonalize any generic ultra-
metric matrix. (For a detailed analysis of the structure of
this non-orthogonal basis, see [26].) Following [23], we can
figure out that only two types of basis vectors are involved
in the expansion: a replicon one q (R,r) and a longitudinal
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Fig. 3. Extending reparametrization transformation to gauges with moving endpoints (see text).

one q (L,r). q (R,r) is just the linear combination of the
(r; r + 1, r + 1) modes which shows up in equation (7)
of [23], and as such, it is an eigenvector of any ultrametric
matrix with the eigenvalue λ(r; r+1, r+1). It has nonzero
components only for α∩β = r, taking two different values
depending on the overlap of α and β with respect to the
ultrametric structure defined by the new block sizes p′r-s:

q(R,r)
αβ =

(pr−2pr+1)(pr − p′r)
2p2
r+1

, α, β in the same p′r block,

q(R,r)
αβ =− (pr−2pr+1)(p′r−pr+1)

2p2
r+1

, α, β in different p′r blocks.

(28)

As for the longitudinal vector q (L,r), it has zero elements
everywhere, except for α ∩ β = r:

q(L,r)
αβ = 1, α ∩ β = r ;

q(L,r)
αβ = 0, α ∩ β 6= r. (29)

r = 0, 1, . . . , R in equation (29), while, remembering that
p′0 = p0 = n, the replicon vector of equation (28) is not
defined for r = 0.

The displacement vector q′ − q can be expanded as

q′−q =
R∑
r=1

(
K(R,r) q(R,r)+K(L,r) q(L,r)

)
+(q′0−q0) q(L,0),

(30)

with the coefficients K(R,r) and K(L,r) determined from
the conditions

(q′ − q)αβ = q′r − qr α, β in the same p′r block,
(q′ − q)αβ = q′r−1 − qr α, β in different p′r blocks,

for r = α ∩ β = 1, . . . , R. (The r = 0 case is trivial, with
(q′ − q)αβ = q′0 − q0, leading to the simple last term in
equation (30).) Using equations (28, 29), it is straightfor-
ward to obtain K(R,r) and K(L,r). For later reference, it
is useful to express them in terms of δqr = q′r − qr and
δpr = p′r − pr:

K(R,r)=
2p2
r+1

(pr−2pr+1)(pr−pr+1)
[(qr−qr−1)+δqr−δqr−1] ,

(31)

K(L,r)=δqr−
qr−1 − qr
pr − pr+1

δpr−
1

pr − pr+1
(δqr−1δpr−δqrδpr).

(32)

What we need in the main text, is the scalar product

〈f | q′ − q〉 ≡
∑
α<β

fαβ (q′ − q)αβ (33)

and the matrix elements

〈q′ − q |M | q′ − q〉 ≡
∑

α<β,γ<δ

(q′ − q)αβMαβ,γδ (q′ − q)γδ

(34)

for an ultrametrically structured vector f and matrix M.
Since f is now a longitudinal vector (orthogonal to any
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replicon one), and also using equation (29), it follows:
〈f | q(R,r)〉 = 0,

〈f | q(L,r)〉 =
n

2
(pr − pr+1)fr. (35)

Combining equations (30) and (35),

〈f | q′ − q〉 =
n

2

R∑
r=1

(pr − pr+1)frK(L,r) +
n

2
(n− p1)f0 δq0

(36)

obtains. To find a similar formula for the matrix element,
we must use results from reference [26]:

M q (R,r) = λ(r; r + 1, r + 1) q (R,r),

M q (L,r) =
R∑
s=0

M (0)
s,r q (L,s), (37)

where the block matrix element M (0)
s,r can be expressed

by the longitudinal kernel K0(s, r) using equation (44)
of reference [26]:

M (0)
s,r = λ(r; r + 1, r + 1) δKr

s,r +
1
2

(pr − pr+1)K0(s, r). (38)

From equations (30) and (37), it is now straightforward
to find the following expression for the matrix elements:

〈q′−q |M | q′−q〉 =
R∑
r=1

K(R,r)2
λ(r; r+1, r+1)〈q(R,r)|q(R,r)〉

+
R∑

r,r′=1

K(L,r)K(L,r′)M
(0)
r,r′ 〈q(L,r) | q(L,r)〉+ δq0

×
R∑
r=1

K(L,r)
(
M

(0)
r,0 〈q(L,r) | q(L,r)〉+M

(0)
0,r 〈q(L,0) | q(L,0)〉

)
+ δq2

0 M
(0)
0,0 〈q(L,0) | q(L,0)〉. (39)

The scalar products occurring in the above formula can
be easily computed from the definitions in equations (28)
and (29):

〈q(R,r) | q(R,r)〉 = −n(pr − 2pr+1)2(pr − pr+1)
8p3
r+1

×
(
pr − pr+1

pr+1
δpr +

1
pr+1

δp2
r

)
〈q(L,r) | q(L,r)〉 =

n(pr − pr+1)
2

· (40)
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4. E. Brézin, D.J. Wallace, K.G. Wilson, Phys. Rev. B 7, 232

(1973).
5. D.J. Thouless, P.W. Anderson, R.G. Palmer, Philos. Mag.

35, 593 (1977).
6. A.J. Bray, M.A. Moore, J. Phys. C 12, L441 (1979).
7. D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35, 1792

(1975).
8. G. Parisi, Phys. Rev. Lett. 43, 1754 (1979); J. Phys. A 13,

L115 (1980); 13, 1101 (1980); 13, 1887 (1980).
9. H. Sompolinsky, Phys. Rev. Lett. 47, 935 (1981).

10. A.V. Goltsev, J. Phys. A 17, 237 (1984).
11. C. De Dominicis, I. Kondor, Phys. Rev. B 27, 606 (1983).
12. W.L. McMillan, J. Phys. C 17, 3179 (1984).
13. D.S. Fisher, D. Huse, Phys. Rev. Lett. 56, 1601 (1986);

Phys. Rev. B 38, 386 (1988).
14. A.J. Bray, M.A. Moore, in Proceedings of the Heidelberg

Colloquium on Glassy Dynamics (Lecture Notes in Physics
275), edited by J.L. van Hemmen, I. Morgenstern
(Springer, Heidelberg, 1986); Phys. Rev. Lett. 58, 57
(1987).

15. I. Kondor, C. De Dominicis, Europhys. Lett. 2, 617 (1986).
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